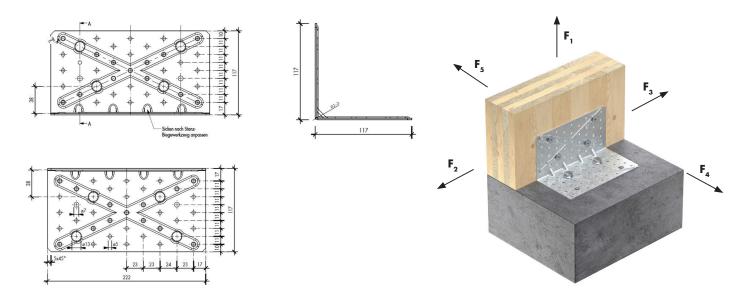


Angolare per forze di taglio e trazione


Piastra angolare di fissaggio per forze di taglio e trazione ideale per il collegamento di elementi in legno a supporti in calcestruzzo o legno

Certificato: ETA-20/0773 Valutazione Tecnica Europea

tipo	B [mm]	L [mm]	H [mm]	spess. [mm]	fori Ø 5 [mm]	fori Ø 7 [mm]	fori Ø 13 [mm]	Art.
DENEB	222	117	117	2	35 + 35	2 + 2	4 + 4	5390 000 300

Geometria

Sollecitazioni

Area di applicazione

Idoneo per le costruzioni in legno, in particolare per:

- Pannelli X-LAM (CLT)
- Legno massiccio e lamellare
- Legno microlamellare (LVL)

Utilizzo in classe di servizio 1 e 2 in accordo a EN 1995

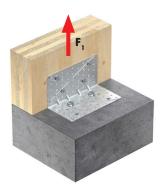
Collegamenti legno-legno

Sollecitazione di trazione Resistenza caratteristica $\mathbf{F}_{1,\mathrm{Rk}}$ e rigidezza $\mathbf{K}_{1,\mathrm{ser}}$

	RESISTENZA		RIGIDEZZA		
Fissaggi		F _{1,Rk} [kN]		K _{1,ser} [N/mm]	
Тіро	n.	$\rho_{\rm k} = 350 {\rm kg/m^3}$	ρ_k = 400 kg/m ³	$\rho_k = 350 \text{ kg/m}^3$	$\rho_k = 400 \text{ kg/m}^3$
chiodi scanalati Ø4x50	35 + 35	12,0	14,0	6000	7000
chiodi scanalati Ø4x60	35 + 35	13,0	15,0	6500	7500
viti ASSY® 4 JH Ø5x50	35 + 35	24,0	28,0	12000	14000
viti ASSY® 4 JH Ø5x70	35 + 35	37,0	42,0	18500	21000

Sollecitazione di taglio Resistenza caratteristica $\mathbf{F}_{2/3,\mathrm{Rk}}$ e rigidezza $\mathbf{K}_{2/3,\mathrm{ser}}$

	RESISTENZA		RIGIDEZZA		
Fissaggi		F _{2/3,Rk} [kN]		K _{2/3,ser} [N/mm]	
Тіро	n.	$\rho_{\rm k} = 350 {\rm kg/m^3}$	ρ_k = 400 kg/m ³	$\rho_k = 350 \text{ kg/m}^3$	$\rho_k = 400 \text{ kg/m}^3$
chiodi scanalati Ø4x50	35 + 35	40,0	44,0	8000	8800
chiodi scanalati Ø4x60	35 + 35	44,0	49,0	11000	12250
viti ASSY® 4 JH Ø5x50	35 + 35	40,0	44,0	20000	22000
viti ASSY® 4 JH Ø5x70	35 + 35	65,0	72,0	32500	36000


Principi di calcolo collegamenti legno - legno

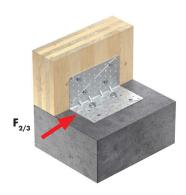
I valori di resistenza sono calcolati secondo lo standard EN 1995-1-1 ed in accordo a ETA-20/0773 (angolare DENEB) e ETA-11/0190 (viti ASSY®) I valori sono calcolati per legno con massa volumica ρ_k =350 kg/m³ e ρk =400 kg/m³

Angolare per forze di taglio e trazione

Collegamenti legno-calcestruzzo

TRAZIONE [F₁] Resistenza caratteristica

Fissaggi		F _{1,Rk} [kN]		
Legno	n.	Calcestruzzo	ρ_k = 350 kg/m ³	
chiodi scanalati Ø4x50	35	2 x M12	min. (10 kN; 2 · N _{Rk,boll})	
chiodi scanalati Ø4x60	35	2 x M12	min. (10 kN; 2 · N _{Rk,boll})	
viti ASSY® 4 JH Ø5x50	35	2 x M12	min. (10 kN; 2 · N _{Rk,boll})	
viti ASSY® 4 JH Ø5x70	35	2 x M12	min. (10 kN; 2 · N _{Rk,boll})	


Resistenza lato calcestruzzo – valori di progetto

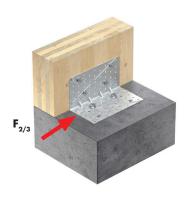
Fissaggi	F _{1,Rd,bolts} [kN]			
Legno	h _{ef} [mm]	CLS non fessurato	CLS fessurato	sismico – C2
W-FAZ/S M12x110	70	28,1	21,6	11,6
WIT-UH 300 - M12 - cl. 5.8	70	30,9	18,8	-
WIT-UH 300 - M12 - cl. 8.8	70	-	-	5,8
WIT-UH 300 - M12 - cl. 8.8	133	-	-	11,1

Angolare per forze di taglio e trazione

Collegamenti legno-calcestruzzo

TRAZIONE $[F_{2/3}]$ - FISSAGGI INTERNI Resistenza caratteristica

Fissaggi		F _{2/3,Rk} [kN]		
Legno	n.	Calcestruzzo	ρ_k = 350 kg/m ³	
chiodi scanalati Ø4x50	35	2 x M12	min. (24 kN; 2 · V _{Rk,bolt})	
chiodi scanalati Ø4x60	35	2 x M12	min. (27 kN; 2 · V _{Rk,bolt})	
viti ASSY® 4 JH Ø5x50	35	2 x M12	min. (36 kN; 2 · V _{Rk,bolt})	
viti ASSY® 4 JH Ø5x70	35	2 x M12	min. (42 kN; 2 · V _{Rk,bolt})	


Resistenza lato calcestruzzo – valori di progetto

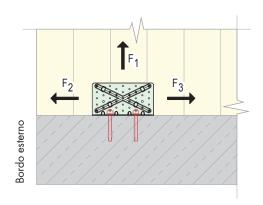
Fissaggi	F _{2/3,Rd,bolts}			
Legno	h _{ef} [mm]	CLS non fessurato	CLS fessurato	sismico – C2
W-FAZ/S M12x110	70	48,0	34,5	22,0
WIT-UH 300 - M12 - cl. 5.8	120	40,5	37,7	-
WIT-UH 300 - M12 - cl. 8.8	120	-	-	17,6
WIT-UH 300 - M12 - cl. 8.8	170	-	-	25,0

Angolare per forze di taglio e trazione

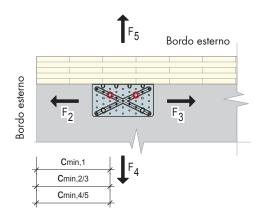
Collegamenti legno-calcestruzzo

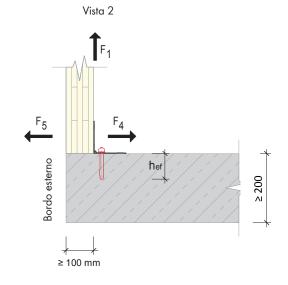
TRAZIONE $[F_{2/3}]$ - FISSAGGI ESTERNI Resistenza caratteristica

Fissaggi		F _{2/3,Rk} [kN]	
Legno	n.	Calcestruzzo	$\rho_k = 350 \text{ kg/m}^3$
chiodi scanalati Ø4x50	35	2 x M12	min. (13 kN; 2 · V _{Rk,bolt})
chiodi scanalati Ø4x60	35	2 x M12	min. (16 kN; 2 · V _{Rk,bolt})
viti ASSY® 4 JH Ø5x50	35	2 x M12	min. (27 kN; 2 · V _{Rk,bolt})
viti ASSY® 4 JH Ø5x70	35	2 x M12	min. (34 kN; 2 · V _{Rk,bolt})


Resistenza lato calcestruzzo – valori di progetto

Fissaggi	F _{2/3,Rd,bolts}			
Legno	h _{ef} [mm]	CLS non fessurato	CLS fessurato	sismico – C2
W-FAZ/S M12x110	70	48,0	42,9	22,0
WIT-UH 300 - M12 - cl. 5.8	120	40,5	40,5	-
WIT-UH 300 - M12 - cl. 8.8	120	-	-	17,6
WIT-UH 300 - M12 - cl. 8.8	170	-	-	25,0




Angolare per forze di taglio e trazione Schema di installazione e di carico

Vista 1

Top view

Legenda

 $c_{min,1}$ distanza minima dal bordo esterno del connettore nel calcestruzzo per il carico F_1 $c_{min,2/3}$ distanza minima dal bordo esterno del connettore nel calcestruzzo per il carico F_2 o F_3 $c_{min,4/5}$ distanza minima dal bordo esterno del connettore nel calcestruzzo per il carico F_4 o F_5

Principi di calcolo fissaggi calcestruzzo

I valori di resistenza sono calcolati secondo la normativa EN 1995-1-1:2014 ed in accordo a ETA-20/0773 (angolare DENEB), ETA-11/0190 (viti ASSY), ETA-17/0127 (ancorante WIT-UH 300), ETA 16/0043 (ancorante a vite W-BS/S), ETA-99/0011(ancorante W-FAZ/S).

La resistenza di progetto lato calcestruzzo è stata valutata considerando:

- classe del calcestruzzo C25/30;
- distanza dal bordo del calcestruzzo 140 mm (fissaggi interni) e 190 mm (fissaggi esterni) per simulare la presenza di una parete XLAM di 100mm di spessore;
- calcolo in accordo a EN 1992-4:2018;
- progettazione sismica:

prestazione sismica C2

progettazione A2

deformazioni limite in accordo ai documenti ETA di prodotto

per resistenza a taglio è prevista installazione della rondella di riempimento WIT-SHB M12, D14 (agap = 1)

Nota

I parametri meccanici, geometrici, di installazione contenuti nei documenti ETA di prodotto e/o altre normative/standard sono stati citatici in parte e riassunti in questa brochure. Si prega di osservare il testo completo delle rispettive normative e standard.

La correttezza e la conformità alle normative in vigore devono essere verificate e approvate dall'ingegnere strutturale responsabile.

Angolare DENEB

L'angolare Deneb per forze di trazione e di taglio è ideale per il collegamento tra elementi strutturali in legno o a supporti in calcestruzzo o acciaio.

Art. no. 5390 000 300

ASSY 4 JH

Vite a filetto intero con testa cilindrica bombata e sottotesta con collare cilindrico rinforzato. Ideale per il fissaggio della ferramenta da carpenteria su legno come angolari e piastre e per connessioni acciaio/

Art. no. 0153 3...

Chiodi scanalati / Chiodi anker

Chiodi a gambo scanalato per un'aderenza migliorata e una maggior resistenza ad estrazione. In acciaio al carbonio con zincatura galvanica (A2K).

Art. no. 0681 94...

Art. no. 0457 700...

ASSY PLUS VG 4 COMBI

Vite a filetto intero, con testa esagonale e gambo rinforzato sottotesta, per giunzioni acciaio-legno ad elevate capacità di carico, rinforzi strutturali per carpenteria in legno o in combinazione con il dispositivo di sollevamento DST. Punta autoforante che permette l'installazione anche con distanze dai bordi ridotte.

Art. no. 0150 2...

ASSY PLUS VG 4 CSMP

Vite a filetto intero, con testa piana svasata e tasche raccoglitrucioli sottotesta, per giunzioni legno-legno ad elevate capacità di carico, giunzioni legno-metallo o rinforzi strutturali di strutture in legno. Punta autoforante che permette l'installazione anche con distanze dai bordi ridotte.

Art. no. 0150 1...

Rondelle 45°, impronta cilindrica

Ideale per il trasferimento di elevate sollecitazioni di trazione nei collegamenti acciaio/legno realizzate con viti ASSY 4 a testa piana svasata.

Ancorante chimico WIT-UH 300

Resina reattiva bicomponente, malta ibrida uretanica vinilestere senza stirene. Ancorante ad alte prestazioni per calcestruzzo e riprese di getto con ferri di armatura (REBAR).

Art. no. 5918 500 420

Ancorante chimico WIT-PE 1000

Resina epossidica pura con tempi di lavorazione elevati, ideale per grandi profondità di ancoraggio e foratura, nonché per temperature elevate. Per ancoraggi in calcestruzzo e collegamenti con ferri d'armatura post-installati (REBAR).

Art. no. 5918 605 ...

Ancorante meccanico W-FAZ/S

Ancorante meccanico ad elevate prestazioni per calcestruzzo fessurato e non fessurato. Fissaggio rapido e efficace. Possibilità di applicare carichi elevati immediatamente senza tempi di attesa. Prestazione sismica C1 e C2.

Art. no. 5928 2 ... 5928 212 030 ... 0904 5 ...

Barra d'ancoraggio W-VD-A/S M12

Barra d'ancoraggio W-VD-A /S in acciaio zincato classe di resistenza 5.8 e 8.8. Per sistema a iniezione WIT in calcestruzzo e muratura; completa di dado e rondella. Dotata di testa esagonale, tacca di posa e terminale a punta a forma di cuneo.

Art. no. 5915 112 xxx 5915 312 xxx

Rondella di riempimento WIT-SHB M12

Rondella per il riempimento dello spazio anulare tra elemento di fissaggio e ancorante (chimico o fisico) d'ancoraggio W-VD-A /S in acciaio zincato.

Art. no. 0903 488 412